Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 22(19)2021 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-34638559

RESUMO

Although peroxisomes play an essential role in viral pathogenesis, and viruses are known to change peroxisome morphology, the role of genotype in the peroxisomal response to viruses remains poorly understood. Here, we analyzed the impact of wheat streak mosaic virus (WSMV) on the peroxisome proliferation in the context of pathogen response, redox homeostasis, and yield in two wheat cultivars, Patras and Pamir, in the field trials. We observed greater virus content and yield losses in Pamir than in Patras. Leaf chlorophyll and protein content measured at the beginning of flowering were also more sensitive to WSMV infection in Pamir. Patras responded to the WSMV infection by transcriptional up-regulation of the peroxisome fission genes PEROXIN 11C (PEX11C), DYNAMIN RELATED PROTEIN 5B (DRP5B), and FISSION1A (FIS1A), greater peroxisome abundance, and activation of pathogenesis-related proteins chitinase, and ß-1,3-glucanase. Oppositely, in Pamir, WMSV infection suppressed transcription of peroxisome biogenesis genes and activity of chitinase and ß-1,3-glucanase, and did not affect peroxisome abundance. Activity of ROS scavenging enzymes was higher in Patras than in Pamir. Thus, the impact of WMSV on peroxisome proliferation is genotype-specific and peroxisome abundance can be used as a proxy for the magnitude of plant immune response.


Assuntos
Resistência à Doença/imunologia , Peroxissomos/metabolismo , Doenças das Plantas/imunologia , Doenças das Plantas/microbiologia , Potyviridae , Triticum/imunologia , Triticum/virologia , Quitinases/metabolismo , Clorofila/metabolismo , Glucana 1,3-beta-Glucosidase/metabolismo , Oxirredução , Peroxidases/metabolismo , Peroxissomos/genética , Peroxissomos/virologia , Fenótipo , Folhas de Planta/imunologia , Folhas de Planta/virologia , Espécies Reativas de Oxigênio/metabolismo
2.
Ecotoxicol Environ Saf ; 208: 111695, 2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-33396026

RESUMO

The priority list of freshwater pollutants is increasingly amended by pharmaceuticals. Their impact on the aquatic biota can be modulated by the presence of typical pollutants, like pesticides, and/or abnormal heating. The aim of this study was to elucidate potentially hazardous impact of combined environmental factors on the freshwater mussels by analyzing various sets of biochemical markers. We treated the bivalve molluscs of Unio tumidus with non-steroidal anti-inflammatory drug diclofenac (Dc, 2 nM), calcium antagonist and antihypertensive drug nifedipine (Nf, 2 nM) or organophosphonate glyphosate-based herbicide Roundup MAX (Rn, 79 nM of glyphosate) at 18 °C as well as with the mixture of these substances at 18 °C (Mix) or 25 °C (MixT) during 14 days. The concentrations used were correspondent to the environmentally relevant levels. The biomarkers of stress and toxicity were evaluated in digestive gland, except the lysosomal membrane stability measured in hemocytes. Exposures caused an oxidative stress due to the decreased SOD and GST activities and GSH/GSSG ratio, increased levels of thiobarbituric acid-reactive substances and protein carbonyls (with some exceptions). Dc increased cathepsin D activity in lysosomes. Nf increased lysosomal membrane stability and caspase-3 activity. Rn caused a dramatic distortion of metallo-thiolome due to increased levels of GSH and metallothionein-related thiols (MTSH) as well as depletion of Zn, Cu and Cd in the composition of metallothioneins, and decreased Zn/Cu molar ratio in the tissue. The particular toxicity of Rn was also attested by decreased lysosomal membrane stability and cholinesterase activity. Canonical discriminant analysis separated Rn-, Mix- and MixT-groups from the joint set of C-, Dc- and Nf-groups. Generally, compound-specific effects were expressed in U. tumidus responses to the mixtures, but in MixT-group some effects were particular or extremely strong. Multi-marker approach and integrative analysis proved to be a useful tool for understanding possible future risks to freshwater mussels under a combination of xenobiotics and warming climate.


Assuntos
Exposição Ambiental/efeitos adversos , Herbicidas/toxicidade , Preparações Farmacêuticas , Unio/efeitos dos fármacos , Poluentes Químicos da Água/toxicidade , Animais , Biomarcadores/metabolismo , Exposição Ambiental/análise , Herbicidas/metabolismo , Temperatura Alta/efeitos adversos , Lisossomos/efeitos dos fármacos , Lisossomos/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Preparações Farmacêuticas/metabolismo , Unio/metabolismo , Poluentes Químicos da Água/metabolismo
3.
Small ; 8(12): 1904-11, 2012 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-22461328

RESUMO

Biological strategies for bottom-up synthesis of inorganic crystalline and amorphous materials within topographic templates have recently become an attractive approach for fabricating complex synthetic structures. Inspired by these strategies, herein the synthesis of multi-layered, hierarchical inverse colloidal crystal films formed directly on topographically patterned substrates via evaporative deposition, or "co-assembly", of polymeric spheres with a silicate sol-gel precursor solution and subsequent removal of the colloidal template, is described. The response of this growing composite colloid-silica system to artificially imposed 3D spatial constraints of various geometries is systematically studied, and compared with that of direct colloidal crystal assembly on the same template. Substrates designed with arrays of rectangular, triangular, and hexagonal prisms and cylinders are shown to control crystallographic domain nucleation and orientation of the direct and inverse opals. With this bottom-up topographical approach, it is demonstrated that the system can be manipulated to either form large patterned single crystals, or crystals with a fine-tuned extent of disorder, and to nucleate distinct colloidal domains of a defined size, location, and orientation in a wide range of length-scales. The resulting ordered, quasi-ordered, and disordered colloidal crystal films show distinct optical properties. Therefore, this method provides a means of controlling bottom-up synthesis of complex, hierarchical direct and inverse opal structures designed for altering optical properties and increased functionality.


Assuntos
Coloides/química , Cristalização , Análise de Fourier , Microscopia/métodos , Microscopia Eletrônica de Varredura/métodos , Transição de Fase , Polímeros/química , Silicatos/química , Silício/química , Dióxido de Silício/química , Propriedades de Superfície
4.
Langmuir ; 27(23): 14143-50, 2011 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-21899285

RESUMO

The prevention and control of ice accumulation has important applications in aviation, building construction, and energy conversion devices. One area of active research concerns the use of superhydrophobic surfaces for preventing ice formation. The present work develops a physics-based modeling framework to predict ice formation on cooled superhydrophobic surfaces resulting from the impact of supercooled water droplets. This modeling approach analyzes the multiple phenomena influencing ice formation on superhydrophobic surfaces through the development of submodels describing droplet impact dynamics, heat transfer, and heterogeneous ice nucleation. These models are then integrated together to achieve a comprehensive understanding of ice formation upon impact of liquid droplets at freezing conditions. The accuracy of this model is validated by its successful prediction of the experimental findings that demonstrate that superhydrophobic surfaces can fully prevent the freezing of impacting water droplets down to surface temperatures of as low as -20 to -25 °C. The model can be used to study the influence of surface morphology, surface chemistry, and fluid and thermal properties on dynamic ice formation and identify parameters critical to achieving icephobic surfaces. The framework of the present work is the first detailed modeling tool developed for the design and analysis of surfaces for various ice prevention/reduction strategies.


Assuntos
Gelo , Modelos Químicos , Interações Hidrofóbicas e Hidrofílicas , Tamanho da Partícula , Propriedades de Superfície , Termodinâmica
5.
J Am Chem Soc ; 133(32): 12430-2, 2011 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-21766862

RESUMO

Much of modern technology--from data encryption to environmental sensors to templates for device fabrication--relies on encoding complex chemical information in a single material platform. Here we develop a technique for patterning multiple chemical functionalities throughout the inner surfaces of three-dimensional (3D) porous structures. Using a highly ordered 3D photonic crystal as a regionally functionalized porous carrier, we generate complex wettability patterns. Immersion of the sample in a particular fluid induces its localized infiltration and disappearance of the bright color in a unique spatial pattern dictated by the surface chemistry. We use this platform to illustrate multilevel message encryption, with selective decoding by specific solvents. Due to the highly symmetric geometry of inverse opal photonic crystals used as carriers, a remarkable selectivity of wetting is observed over a very broad range of fluids' surface tensions. These properties, combined with the easily detectable optical response, suggest that such a system could also find use as a colorimetric indicator for liquids based on wettability.


Assuntos
Cristalização/métodos , Dimetilpolisiloxanos/química , Silanos/química , Molhabilidade , Fótons , Porosidade
6.
ACS Nano ; 4(12): 7699-707, 2010 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-21062048

RESUMO

Materials that control ice accumulation are important to aircraft efficiency, highway and powerline maintenance, and building construction. Most current deicing systems include either physical or chemical removal of ice, both energy and resource-intensive. A more desirable approach would be to prevent ice formation rather than to fight its build-up. Much attention has been given recently to freezing of static water droplets resting on supercooled surfaces. Ice accretion, however, begins with the droplet/substrate collision followed by freezing. Here we focus on the behavior of dynamic droplets impacting supercooled nano- and microstructured surfaces. Detailed experimental analysis of the temperature-dependent droplet/surface interaction shows that highly ordered superhydrophobic materials can be designed to remain entirely ice-free down to ca. -25 to -30 °C, due to their ability to repel impacting water before ice nucleation occurs. Ice accumulated below these temperatures can be easily removed. Factors contributing to droplet retraction, pinning and freezing are addressed by combining classical nucleation theory with heat transfer and wetting dynamics, forming the foundation for the development of rationally designed ice-preventive materials. In particular, we emphasize the potential of hydrophobic polymeric coatings bearing closed-cell surface microstructures for their improved mechanical and pressure stability, amenability to facile replication and large-scale fabrication, and opportunities for greater tuning of their material and chemical properties.


Assuntos
Nanoestruturas/química , Nanotecnologia/métodos , Água/química , Congelamento , Interações Hidrofóbicas e Hidrofílicas , Propriedades de Superfície
7.
Proc Natl Acad Sci U S A ; 107(23): 10354-9, 2010 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-20484675

RESUMO

Whereas considerable interest exists in self-assembly of well-ordered, porous "inverse opal" structures for optical, electronic, and (bio)chemical applications, uncontrolled defect formation has limited the scale-up and practicality of such approaches. Here we demonstrate a new method for assembling highly ordered, crack-free inverse opal films over a centimeter scale. Multilayered composite colloidal crystal films have been generated via evaporative deposition of polymeric colloidal spheres suspended within a hydrolyzed silicate sol-gel precursor solution. The coassembly of a sacrificial colloidal template with a matrix material avoids the need for liquid infiltration into the preassembled colloidal crystal and minimizes the associated cracking and inhomogeneities of the resulting inverse opal films. We discuss the underlying mechanisms that may account for the formation of large-area defect-free films, their unique preferential growth along the 110 direction and unusual fracture behavior. We demonstrate that this coassembly approach allows the fabrication of hierarchical structures not achievable by conventional methods, such as multilayered films and deposition onto patterned or curved surfaces. These robust SiO(2) inverse opals can be transformed into various materials that retain the morphology and order of the original films, as exemplified by the reactive conversion into Si or TiO(2) replicas. We show that colloidal coassembly is available for a range of organometallic sol-gel and polymer matrix precursors, and represents a simple, low-cost, scalable method for generating high-quality, chemically tailorable inverse opal films for a variety of applications.


Assuntos
Transição de Fase , Coloides/química , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Transmissão , Polímeros/química , Dióxido de Silício/química , Titânio/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...